In electronics, a diode is a two-terminal electronic component that conducts electric current in only one direction. The term usually refers to a semiconductor diode, the most common type today. This is a crystalline block of semiconductor material connected to two electrical terminals[1]. A vacuum tube diode (now little used except in some high-power technologies) is a vacuum tube with two electrodes; a plate and a cathode.
The most common function of a diode is to allow an electric current to pass in one direction (called the diode's forward direction) while blocking current in the opposite direction (the reverse direction). Thus, the diode can be thought of as an electronic version of a check valve. This unidirectional behavior is called rectification, and is used to convert alternating current to direct current, and to extract modulation from radio signals in radio receivers.
However, diodes can have more complicated behavior than this simple on-off action, due to their complex non-linear electrical characteristics, which can be tailored by varying the construction of their P-N junction. These are exploited in special purpose diodes that perform many different functions. For example, specialized diodes are used to regulate voltage (Zener diodes), to electronically tune radio and TV receivers (varactor diodes), to generate radio frequency oscillations (tunnel diodes), and to produce light (light emitting diodes).
Diodes were the first semiconductor electronic devices. The discovery of crystals' rectifying abilities was made by German physicist Ferdinand Braun in 1874. The first semiconductor diodes, called cat's whisker diodes were made of crystals of minerals such as galena. Today most diodes are made of silicon, but other semiconductors such as germanium are sometimes used[2].
Contents |
Although the crystal semiconductor diode was popular before the thermionic diode, thermionic and solid state diodes were developed in parallel.
The basic principle of operation of thermionic diodes was discovered by Frederick Guthrie in 1873.[3] Guthrie discovered that a positively charged electroscope could be discharged by bringing a grounded piece of white-hot metal close to it (but not actually touching it). The same did not apply to a negatively charged electroscope, indicating that the current flow was only possible in one direction.
Thomas Edison independently rediscovered the principle on February 13, 1880. At the time, Edison was carrying out research into why the filaments of his carbon-filament light bulbs nearly always burned out at the positive-connected end. He had a special bulb made with a metal plate sealed into the glass envelope, and he was able to confirm that an invisible current could be drawn from the glowing filament through the vacuum to the metal plate, but only when the plate was connected to the positive supply.
Edison devised a circuit where his modified light bulb more or less replaced the resistor in a DC voltmeter and, on this basis, was awarded a patent for it in 1883.[4] There was no apparent practical use for such a device at the time. So, the patent application was most likely simply a precaution in case someone else did find a use for the so-called “Edison Effect”.
About 20 years later, John Ambrose Fleming (scientific adviser to the Marconi Company and former Edison employee) realized that the Edison effect could be used as a precision radio detector. Fleming patented the first true thermionic diode in Britain [5] on November 16, 1904 (followed by U.S. Patent 803,684 in November 1905).
The principle of operation of crystal diodes was discovered in 1874 by the German scientist Karl Ferdinand Braun.[6] Braun patented the crystal rectifier in 1899.[7] Braun’s discovery was further developed by Jagadish Chandra Bose into a useful device for radio detection.
The first actual radio receiver using a crystal diode was built by Greenleaf Whittier Pickard. Pickard received a patent for a silicon crystal detector on November 20, 1906.[8]
Other experimenters tried a variety of minerals and other substances, although by far the most popular was the lead sulfide mineral Galena. Although other substances offered slightly better performance, galena had the advantage of being cheap and easy to obtain, and was used almost exclusively in home-built “crystal sets”, until the advent of inexpensive fixed-germanium diodes in the 1950s.
At the time of their invention, such devices were known as rectifiers. In 1919, William Henry Eccles coined the term diode from the Greek roots dia, meaning “through”, and ode (from ὅδος), meaning “path”.
Thermionic diodes are thermionic-valve devices (also known as vacuum tubes, tubes, or valves), which are arrangements of electrodes surrounded by a vacuum within a glass envelope. Early examples were fairly similar in appearance to incandescent light bulbs.
In thermionic valve diodes, a current through the heater filament indirectly heats the cathode, another internal electrode treated with a mixture of barium and strontium oxides, which are oxides of alkaline earth metals; these substances are chosen because they have a small work function. (Some valves use direct heating, in which a tungsten filament acts as both heater and cathode.) The heat causes thermionic emission of electrons into the vacuum. In forward operation, a surrounding metal electrode called the anode is positively charged so that it electrostatically attracts the emitted electrons. However, electrons are not easily released from the unheated anode surface when the voltage polarity is reversed. Hence, any reverse flow is negligible.
For much of the 20th century, thermionic valve diodes were used in analog signal applications, and as rectifiers in many power supplies. Today, valve diodes are only used in niche applications such as rectifiers in electric guitar and high-end audio amplifiers as well as specialized high-voltage equipment.
A modern semiconductor diode is made of a crystal of semiconductor like silicon that has impurities added to it to create a region on one side that contains negative charge carriers (electrons), called n-type semiconductor, and a region on the other side that contains positive charge carriers (holes), called p-type semiconductor. The diode's terminals are attached to each of these regions. The boundary within the crystal between these two regions, called a PN junction, is where the action of the diode takes place. The crystal conducts conventional current in a direction from the p-type side (called the anode) to the n-type side (called the cathode), but not in the opposite direction.
Another type of semiconductor diode, the Schottky diode, is formed from the contact between a metal and a semiconductor rather than by a p-n junction.
A semiconductor diode’s behavior in a circuit is given by its current–voltage characteristic, or I–V graph (see graph below). The shape of the curve is determined by the transport of charge carriers through the so-called depletion layer or depletion region that exists at the p-n junction between differing semiconductors. When a p-n junction is first created, conduction band (mobile) electrons from the N-doped region diffuse into the P-doped region where there is a large population of holes (vacant places for electrons) with which the electrons “recombine”. When a mobile electron recombines with a hole, both hole and electron vanish, leaving behind an immobile positively charged donor (dopant) on the N-side and negatively charged acceptor (dopant) on the P-side. The region around the p-n junction becomes depleted of charge carriers and thus behaves as an insulator.
However, the width of the depletion region (called the depletion width) cannot grow without limit. For each electron-hole pair that recombines, a positively charged dopant ion is left behind in the N-doped region, and a negatively charged dopant ion is left behind in the P-doped region. As recombination proceeds more ions are created, an increasing electric field develops through the depletion zone which acts to slow and then finally stop recombination. At this point, there is a “built-in” potential across the depletion zone.
If an external voltage is placed across the diode with the same polarity as the built-in potential, the depletion zone continues to act as an insulator, preventing any significant electric current flow (unless electron/hole pairs are actively being created in the junction by, for instance, light. see photodiode). This is the reverse bias phenomenon. However, if the polarity of the external voltage opposes the built-in potential, recombination can once again proceed, resulting in substantial electric current through the p-n junction (i.e. substantial numbers of electrons and holes recombine at the junction). For silicon diodes, the built-in potential is approximately 0.7 V (0.3 V for Germanium and 0.2 V for Schottky). Thus, if an external current is passed through the diode, about 0.7 V will be developed across the diode such that the P-doped region is positive with respect to the N-doped region and the diode is said to be “turned on” as it has a forward bias.
A diode’s 'I–V characteristic' can be approximated by four regions of operation (see the figure at right).
At very large reverse bias, beyond the peak inverse voltage or PIV, a process called reverse breakdown occurs which causes a large increase in current (i.e. a large number of electrons and holes are created at, and move away from the pn junction) that usually damages the device permanently. The avalanche diode is deliberately designed for use in the avalanche region. In the zener diode, the concept of PIV is not applicable. A zener diode contains a heavily doped p-n junction allowing electrons to tunnel from the valence band of the p-type material to the conduction band of the n-type material, such that the reverse voltage is “clamped” to a known value (called the zener voltage), and avalanche does not occur. Both devices, however, do have a limit to the maximum current and power in the clamped reverse voltage region. Also, following the end of forward conduction in any diode, there is reverse current for a short time. The device does not attain its full blocking capability until the reverse current ceases.
The second region, at reverse biases more positive than the PIV, has only a very small reverse saturation current. In the reverse bias region for a normal P-N rectifier diode, the current through the device is very low (in the µA range). However, this is temperature dependent, and at suffiently high temperatures, a substantial amount of reverse current can be observed (mA or more).
The third region is forward but small bias, where only a small forward current is conducted.
As the potential difference is increased above an arbitrarily defined “cut-in voltage” or “on-voltage” or “diode forward voltage drop (Vd)”, the diode current becomes appreciable (the level of current considered “appreciable” and the value of cut-in voltage depends on the application), and the diode presents a very low resistance. The current–voltage curve is exponential. In a normal silicon diode at rated currents, the arbitrary “cut-in” voltage is defined as 0.6 to 0.7 volts. The value is different for other diode types — Schottky diodes can be rated as low as 0.2 V, Germanium diodes 0.25-0.3 V, and red or blue light-emitting diodes (LEDs) can have values of 1.4 V and 4.0 V respectively.
At higher currents the forward voltage drop of the diode increases. A drop of 1 V to 1.5 V is typical at full rated current for power diodes.
The Shockley ideal diode equation or the diode law (named after transistor co-inventor William Bradford Shockley, not to be confused with tetrode inventor Walter H. Schottky) gives the I–V characteristic of an ideal diode in either forward or reverse bias (or no bias). The equation is:
where
The thermal voltage VT is approximately 25.85 mV at 300 K, a temperature close to “room temperature” commonly used in device simulation software. At any temperature it is a known constant defined by:
where k is the Boltzmann constant, T is the absolute temperature of the p-n junction, and q is the magnitude of charge on an electron (the elementary charge).
The Shockley ideal diode equation or the diode law is derived with the assumption that the only processes giving rise to the current in the diode are drift (due to electrical field), diffusion, and thermal recombination-generation. It also assumes that the recombination-generation (R-G) current in the depletion region is insignificant. This means that the Shockley equation doesn’t account for the processes involved in reverse breakdown and photon-assisted R-G. Additionally, it doesn’t describe the “leveling off” of the I–V curve at high forward bias due to internal resistance.
Under reverse bias voltages (see Figure 5) the exponential in the diode equation is negligible, and the current is a constant (negative) reverse current value of −IS. The reverse breakdown region is not modeled by the Shockley diode equation.
For even rather small forward bias voltages (see Figure 5) the exponential is very large because the thermal voltage is very small, so the subtracted ‘1’ in the diode equation is negligible and the forward diode current is often approximated as
The use of the diode equation in circuit problems is illustrated in the article on diode modeling.
For circuit design, a small-signal model of the diode behavior often proves useful. A specific example of diode modeling is discussed in the article on small-signal circuits.
Diode | Zener diode |
Schottky diode |
Tunnel diode |
Light-emitting diode |
Photodiode | Varicap | Silicon controlled rectifier |
There are several types of junction diodes, which either emphasize a different physical aspect of a diode often by geometric scaling, doping level, choosing the right electrodes, are just an application of a diode in a special circuit, or are really different devices like the Gunn and laser diode and the MOSFET:
Normal (p-n) diodes, which operate as described above, are usually made of doped silicon or, more rarely, germanium. Before the development of modern silicon power rectifier diodes, cuprous oxide and later selenium was used; its low efficiency gave it a much higher forward voltage drop (typically 1.4–1.7 V per “cell”, with multiple cells stacked to increase the peak inverse voltage rating in high voltage rectifiers), and required a large heat sink (often an extension of the diode’s metal substrate), much larger than a silicon diode of the same current ratings would require. The vast majority of all diodes are the p-n diodes found in CMOS integrated circuits, which include two diodes per pin and many other internal diodes.
Avalanche diodes
Cat’s whisker or crystal diodes
Constant current diodes
Esaki or tunnel diodes
Gunn diodes
Light-emitting diodes (LEDs)
Peltier diodes
Point-contact diodes
PIN diodes
Schottky diodes
Super Barrier Diodes
Gold-doped diodes
Snap-off or Step recovery diodes
Transient voltage suppression diode (TVS)
Varicap or varactor diodes
Zener diodes
Other uses for semiconductor diodes include sensing temperature, and computing analog logarithms (see Operational amplifier applications#Logarithmic).
There are a number of common, standard and manufacturer-driven numbering and coding schemes for diodes; the two most common being the EIA/JEDEC standard and the European Pro Electron standard:
A standardized 1N-series numbering system was introduced in the US by EIA/JEDEC (Joint Electron Device Engineering Council) about 1960. Among the most popular in this series were: 1N34A/1N270 (Germanium signal), 1N914/1N4148 (Silicon signal), 1N4001-1N4007 (Silicon 1A power rectifier) and 1N54xx (Silicon 3A power rectifier)[18][19][20]
The European Pro Electron coding system for active components was introduced in 1966 and comprises two letters followed by the part code. The first letter represents the semiconductor material used for the component (A = Germanium and B = Silicon) and the second letter represents the general function of the part (for diodes: A = low-power/signal, B = Variable capacitance, X = Multiplier, Y = Rectifier and Z = Voltage reference), for example:
Other common numbering / coding systems (generally manufacturer-driven) include:
As well as these common codes, many manufacturers or organisations have their own systems too — for example:
In optics, an equivalent device for the diode but with laser light would be the Optical isolator, also known as an Optical Diode, that allows light to only pass in one direction. It uses a Faraday rotator as the main component.
The first use for the diode was the demodulation of amplitude modulated (AM) radio broadcasts. The history of this discovery is treated in depth in the radio article. In summary, an AM signal consists of alternating positive and negative peaks of voltage, whose amplitude or “envelope” is proportional to the original audio signal. The diode (originally a crystal diode) rectifies the AM radio frequency signal, leaving an audio signal which is the original audio signal, minus atmospheric noise. The audio is extracted using a simple filter and fed into an audio amplifier or transducer, which generates sound waves.
Rectifiers are constructed from diodes, where they are used to convert alternating current (AC) electricity into direct current (DC). Automotive alternators are a common example, where the diode, which rectifies the AC into DC, provides better performance than the commutator of earlier dynamo. Similarly, diodes are also used in Cockcroft–Walton voltage multipliers to convert AC into higher DC voltages.
Diodes are frequently used to conduct damaging high voltages away from sensitive electronic devices. They are usually reverse-biased (non-conducting) under normal circumstances. When the voltage rises above the normal range, the diodes become forward-biased (conducting). For example, diodes are used in (stepper motor and H-bridge) motor controller and relay circuits to de-energize coils rapidly without the damaging voltage spikes that would otherwise occur. (Any diode used in such an application is called a flyback diode). Many integrated circuits also incorporate diodes on the connection pins to prevent external voltages from damaging their sensitive transistors. Specialized diodes are used to protect from over-voltages at higher power (see Diode types above).
Diodes can be combined with other components to construct AND and OR logic gates. This is referred to as diode logic.
In addition to light, mentioned above, semiconductor diodes are sensitive to more energetic radiation. In electronics, cosmic rays and other sources of ionizing radiation cause noise pulses and single and multiple bit errors. This effect is sometimes exploited by particle detectors to detect radiation. A single particle of radiation, with thousands or millions of electron volts of energy, generates many charge carrier pairs, as its energy is deposited in the semiconductor material. If the depletion layer is large enough to catch the whole shower or to stop a heavy particle, a fairly accurate measurement of the particle’s energy can be made, simply by measuring the charge conducted and without the complexity of a magnetic spectrometer or etc. These semiconductor radiation detectors need efficient and uniform charge collection and low leakage current. They are often cooled by liquid nitrogen. For longer range (about a centimetre) particles they need a very large depletion depth and large area. For short range particles, they need any contact or un-depleted semiconductor on at least one surface to be very thin. The back-bias voltages are near breakdown (around a thousand volts per centimetre). Germanium and silicon are common materials. Some of these detectors sense position as well as energy. They have a finite life, especially when detecting heavy particles, because of radiation damage. Silicon and germanium are quite different in their ability to convert gamma rays to electron showers.
Semiconductor detectors for high energy particles are used in large numbers. Because of energy loss fluctuations, accurate measurement of the energy deposited is of less use.
A diode can be used as a temperature measuring device, since the forward voltage drop across the diode depends on temperature, as in a Silicon bandgap temperature sensor. From the Shockley ideal diode equation given above, it appears the voltage has a positive temperature coefficient (at a constant current) but depends on doping concentration and operating temperature (Sze 2007). The temperature coefficient can be negative as in typical thermistors or positive for temperature sense diodes down to about 20 kelvins. Typically, silicon diodes have approximately −2 mV/˚C temperature coefficient at room temperature.
Diodes will prevent currents in unintended directions. To supply power to an electrical circuit during a power failure, the circuit can draw current from a battery. An Uninterruptible power supply may use diodes in this way to ensure that current is only drawn from the battery when necessary. Similarly, small boats typically have two circuits each with their own battery/batteries: one used for engine starting; one used for domestics. Normally both are charged from a single alternator, and a heavy duty split charge diode is used to prevent the higher charge battery (typically the engine battery) from discharging through the lower charged battery when the alternator is not running.
Diodes are also used in electronic musical keyboards. To reduce the amount of wiring needed in electronic musical keyboards, these instruments often use keyboard matrix circuits. The keyboard controller scans the rows and columns to determine which note the player has pressed. The problem with matrix circuits is that when several notes are pressed at once, the current can flow backwards through the circuit and trigger "phantom keys" that cause “ghost” notes to play. To avoid triggering unwanted notes, most keyboard matrix circuits have diodes soldered with the switch under each key of the musical keyboard. The same principle is also used for the switch matrix in solid state pinball machines.
Diodes are usually referred to as D for diode on PCBs. Sometimes the abbreviation CR for crystal rectifier is used.[21]